BRISBANE VALLEY FLYER NOVEMBER

Watts Bridge Memorial Airfield, Cressbrook-Caboonbah Road, Toogoolawah, Q'ld 4313. XXX XXXXXX (Editor) Tel: 07 5427 0820, Email: randomdudesfarming@hotmail.com

Good afternoon, everyone

The Committee hereby notifies our members of our intention to hold the BVSAC

AGM on Saturday 1st November 2025 at 10:30am.

Nominations are sought for the following positions which will become vacant at the

AGM - President, Vice President, Secretary, Treasurer, Technical Officer, Social

Officer and Membership Officer.

Nomination forms and Proxy forms will be sent out to all members via email in the coming week.

Contents

ANNUAL GENERAL MEETING NOTICE.

FROM THE PRESIDENT

EXPLANATIONS

OPINION PIECE

A DRY ARGUMENT

A QUIZ ABOUT OPERATIONS

TECHNICAL DISCUSSION RE ENGINE FAILURE AFTER TAKE OFF

ADVERTISING OF AVIATION RELATED EQUIPMENT

Our website - bysac.com.au

Greetings Members,

Best wishes

Peter Ratcliffe
President BVSAC

The year is certainly passing quickly!

During October, the pavers located under the rear section of the clubhouse were removed and replaced with a new concrete surface. The new sign has also been ordered and has now arrived.

Work continues on the new storeroom, with plasterboard linings scheduled to be installed shortly.

At our last meeting, we thanked Rob Knight for his outstanding service in producing 140 news flyers over the years. In recognition of his dedication, members unanimously granted him Life Membership of the club.

Our next meeting will be the Annual General Meeting (AGM). If you're interested in joining the board or taking on a position, please feel free to nominate — nomination forms will be sent out very soon.

The next meeting will be held on 1 November. Come along and join us for a great day!

From your President

G,day to All,

Have to start somewhere. The FLYER will be coming along pretty much the same as ever. It has always been well received, so it aint broke, so I won't fix it. In fact, I'll be pretty chuffed it it comes out on time and is readable. Becoming the organizer of the FLYER is a frightening thing to a semi-retired farmer who wrote a few crop and weather reports for the SUGARCANE magazine. Sugar cane has been most of my and my family's life. I even learned to fly a CESSNA from a sugar cane farmer. Happily, I spent some time flying over the sugarcane. My first Instructor had a 4000-hour association with TIGER MOTH's. He said the best thing about modern aviation was not having hot oil splatter on your face. I was an extremely shy, jumpy student. I realise now it was a matter of not knowing enough about the world of flight that made me nervous.

I have tailwheel, basic aerobatic and somehow an initial twin endorsement and when ultralighting and JABIRU cam e into existence a few hours were put on in that interesting space. My last aerial activity was glider flight.

Then medical misadventure. 2 total knee replacements and various chronic problems caused me to pull up short for a few years, but now I'm back. So far flying the EDITORS desk. Looking to the future from said desk.

Regards,

Mike Hetherington

FLYER coordination Officer.?

Impressions from a BVSAC GENERAL MEETING

Quantity or Quality. The energy and commitment of Members of the BVSAC is to be noted. The value to the community of the Brisbane Valley is reflected in the determination of the Club members to see the airfield go ahead in a positive and inclusive manner. Flight is a major topic of conversation of course, but along with it the airfield is a requirement to be able to commit this act of flight. The technical level of discussion on both topics has to be seen/heard to be realised. Facilities are good on the airfield and these facilities are valued and maintained to a high standard. Robust debate is par for the course during meetings. This alone shows the degree of commitment by Office Bearers and Members.

Then there is the side of Members that is not part of flight or airfields. It is the caring for mate's environment. Health and welfare are as important to this crew as operational technique or mines faster than yours. Way back a famous pilot author, Antoine St. Exupéry said flight was spiritual, but without people back home, flight was an empty achievement.

President's report was an example of how President's cope. Everything SNAFU as usual. Patience and diplomacy at micro level. Work at the airfield is one of those things where contractors seem to feel Watts is remote. Money management is as usual difficult. The Admin. copes well with this and Members carried the Financials with an amount of dismay at the cost increases.

A small but significant amount of success has been achieved with one Members aircraft achieving high speed taxy.

The retiring editor of the Flyer was unanimously granted Life Membership for an extraordinary amount of work in having produced the Flyer no less than 140 issues. Congratulations were many (and as you look to the technical article you will see he is a long way from giving up) from all present.

Another part of having an airfield is interaction with all layers of governance. Governance because many things other than Government cry out for attention. With many different users and uses and a community expectation that "somebody" will provide an airfield, Committees and Boards do much unseen work to make the airfield tick. Members of the Club are part of this organization and have to add this on top of BVSAC volunteer work. Credit due.

Exhausted and talked out, the chief Barbecue Officer is called on and lunch is out. Maybe lunch is just time to refuel and back to topic. No, the old yarns start up and it's a lot of leg pulling and fun before folks start to drift off.

Many people drive and fly at some expense to make these meetings. They get their monies worth. And so does the Community for their interest. The BVSAC is a responsible and valuable member of the Watts Bridge Airfield society. /

Page 3 Issue Number MONTH – 2025

A Dry Argument

Summer is here, bringing with it clear skies and warm, sunny days. But summer is the season for an often overlooked but serious flight hazard: dehydration. Unfortunately, many pilots are unaware of the symptoms of dehydration and the dangers this insidious condition can pose during flight.

The feeling of thirst is not the best indicator of dehydration. From PARAMEDICS ADVICE by the time, you feel thirsty, you might already be in the throes of dehydration. Left untreated, dehydration can cause headaches, nausea and cramps and more seriously disorientation. Each of these symptoms can significantly impede one's mental and physical performance. For pilots, this will lead to poor decision-making, putting them at an increased risk of dangerous incidents or accidents.

So, what can you do to prevent dehydration when flying during the hot summer months? Make another (!) checklist for yourself.

AND

Watch for the signs of dehydration

Prolonged dehydration early progresses to heat exhaustion. Without treatment, heat exhaustion can lead to kidney damage, seizures, and even heat stroke, which can be life-threatening. Fluid loss and dehydration can be caused by exercising, excessive sweating, flying at high altitudes, or as the result of a recent illness. For pilots, moving and pre-flighting the aircraft on a hot, sunny runway or long flights in an unairconditioned cockpit can quickly lead to dehydration.

Some of the warning signs of mild dehydration to look out for include headache, fatigue, dizziness, dry or sticky mouth, and of course, the sensation of thirst. Very true and not to be ignored. If you notice any of these signs in yourself or one of your passengers, rehydrate right away and move to a cooler area, if possible. Back to the hanger. Shady/ breezy side. Not necessarily small drinks of icecold water.

Keep water handy on every flight

It's a good idea to stash a bottle of water (or a sports drink) to your flight bag to maintain hydration. Peeing cannot be laughed about. Take it seriously and take a bottle if it's along leg. Ask glider pilots for help. % hours flight duration is a Goal for Glider pilots. No one, well almost no one lasts that long. Keep some water bottles on board for your passengers, too. The amount of water you need each day depends on individual factors, but in general, experts suggest drinking at least five 8-ounce glasses of water per day. If you have trouble reaching your daily water intake, make a goal to finish a bottle of water at the top of every hour, or try using a smartphone app to set helpful reminders.

Stay away from diuretic drinks. Once again ask a glider pilot about the difference between an orange and an apple in the shirt pocket.

Diuretic beverages, such as alcohol, coffee, tea, and the dreaded cola type contribute to fluid loss and may further your risk of becoming dehydrated. Try to limit your intake of diuretics and drink plain water as your beverage of choice, especially during the summer. Luckily, this doesn't mean that you have to live without your morning cup of coffee; just be sure to sip plenty of water for every cup you drink. If you're not a fan of the taste of plain water, try adding some fresh fruit to your oxygen di hydride or choose an electrolyte-enhanced sports drink instead. Watch for the specials in the supermarkets. These macho drinks are very expensive from the roadhouse on the way to the field.

Feeling lightheaded, dizzy, or lost the iPad again. Pull up. Walk away. Have a cold one. Non-alcoholic drinks are all around nowadays. The iPad will miraculously appear when your back on speed.

When pre-flighting your aircraft, don't forget to evaluate your own fitness to fly, which includes being honest about your current health condition. COVID, is still with us. Fluid loss from these things is serious. Consider your recent illnesses, if any and plan something extra. Are you drinking enough water to make up for fluid loss due to extreme temperatures, increased physical activity, or your consumption of diuretic drinks? If you start to feel dizzy, lightheaded, or faint, don't hesitate to cancel or delay your plans until you feel up for flying.

Fly safely, it's a long summer and remember to bottoms up! As well as flap, undercarriage and whatever other bits you might have hanging out.

Page 5 Issue Number MONTH – 2025

Advanced Quiz: Pre-Flight Preparation for Licensed Pilots in Rural Australia

- 1. When operating under VFR in Class G airspace in rural Australia, what is your primary method for maintaining traffic separation?
 - Listening for traffic advisories from ATC
 - Visual lookout and radio self-announcements on the CTAF or 126.7 MHz
 - Relying on ADS-B traffic alerts
 - Monitoring the area frequency only
- 2. Under Civil Aviation Order 20.11, which of the following survival items is mandatory when operating beyond gliding distance from land or over sparsely populated areas?
 - Two-way radio and GPS
 - Approved life jackets and an Emergency Locator Transmitter (ELT) or Personal Locator Beacon (PLB)
 - Parachutes for all occupants
 - · Satellite phone only
- 3. When calculating fuel for a VFR flight, which reserve must you include for a private operation during daylight hours?
 - 30 minutes fixed reserve
 - 45 minutes fixed reserve
 - 60 minutes fixed reserve
 - Contingency fuel only
- 4. If you're operating from an unlicensed or private airstrip, what's the recommended preflight action?
 - Verify runway surface condition, slope, and length suitability via NOTAMs and local sources
 - Assume the strip is suitable if it appears on a map
 - Use full power and rotate early
 - Only inspect if it hasn't been used for six months
- 5. You are planning a route through multiple uncontrolled aerodromes. What is the most appropriate radio frequency management technique?
 - Stay on 121.5 MHz until within 10 NM of destination
 - Remain on area frequency until joining circuit
 - Use 126.7 MHz en route and change to the local CTAF within 10 NM or 1 000 ft AGL
 - Only transmit on CTAF when lined up for take-off

- 6. When submitting a flight notification with SARTIME, when must you activate and cancel it?
 - Automatically on departure and landing
 - B) Manually with Airservices Australia upon departure and after landing
 - C) Only if your flight exceeds 200 NM
 - D) No need to cancel; it expires automatically
- 7. You encounter unexpected marginal VMC while over remote terrain. What is the recommended immediate action under VFR?
 - Descend to stay below cloud
 - B) Turn back or divert to maintain legal VMC and terrain clearance
 - C) Continue on track until VMC improves
 - D) Request a pop-up IFR clearance
- 8. What is the key consideration when determining take-off performance at a high-temperature, high-elevation rural strip?
 - Increased climb performance
 - B) Shorter take-off roll due to heat
 - C) Reduced density altitude leading to longer take-off distance and reduced climb rate
 - D) Airframe icing risk
- 9. What is the correct call-out procedure when operating at a non-controlled aerodrome under CTAF procedures?
 - Only broadcast on final approach
 - B) Broadcast on taxi, take-off, joining circuit, downwind, base, and final
 - C) Broadcast on downwind and landing only
 - D) Broadcast only if other traffic is visible
- 10. What is the best practice for flight planning in remote Australia where fuel availability is uncertain?
 - Carry only enough fuel for the planned route plus legal reserves
 - Contact local operators for fuel confirmation and plan alternates with guaranteed supply
 - Assume Avgas is available at all registered aerodromes
 - Carry jerry cans in the cabin

Page 7 Issue Number MONTH – 2025

Dissection of a Turnback

By Rob Knight M22-003

Perhaps the most obstinate mishap statistic in light, single engined aeroplane operations, relates to the so-called "turn-back" after suffering an engine failure soon after take-off. It's always topical and is aired in all flying magazines from time to time so maybe a closer look at the issues and strategies to deal with this topic would help. Unfortunately, some publications that should know better actually promote attempting a turn back, the writers proclaiming that it's quite achievable. Perhaps it is, but when even very experienced pilots, with many thousands of hours logged, kill themselves, what chance do weekend pilots have that fly now and again, and, even then, only for fun.

Look closely at the odds of surviving a turn back.

- If you don't turn back, you have at least a 95% chance of surviving.
- BUT, if you try a TURN BACK, there's, perhaps, a 95% chance YOU WON'T SURVIVE.

So, what are we talking about? A turn-back in the sense of this discussion is the act of turning back and attempt to land on the runway just used for take-off after an engine failure – either partial or complete. The common instructor advice is to land on the best available site straight ahead, or within about 30 degrees each side of that but, too frequently, in the stress of the moment, this is ignored and the afflicted pilot attempts to carry out a 180° turn, back to land downwind on the runway just departed. This, all too often, ends with fatal results.

Let's take the issues apart and look at them to see if a better understanding of the dangers will allow a turn in the statistics.

Is the turn-back as dangerous as it is painted? Must it be ruled out at all costs, or is there room for maybe attempting it under certain circumstances? Let's examine all the pertinent factors and then you, as reader/pilots, can make up your own minds.

The problem starts with the failure of the engine. This, in itself, is not the cause of the accident. The cause lies in the subsequent actions taken by the pilot after that silence ensues.

The fundamental cause of the accident is the inability of the pilot to ensure that the aeroplane maintains sufficient airspeed to maintain controlled flight after the engine fails. To some extent this is addressed in the mantra passed on by instructors when teaching this EFATO exercise as the standard patter for the very first act by the pilot after recognizing that the engine has failed is to press the stick forward. Keeping the aeroplane under full pilot control is absolutely paramount to making a safe landing after the event. In the historic words of Bob Hoover, "If you're faced with a forced landing, fly the thing as far into the crash as possible." Without sufficient airspeed for control this can never happen and the statistics tell us just how seldom adequate airspeed is retained.

In light of the obvious clarity and importance of the statement above, why is it so often that the issue of airspeed is not addressed? Speaking from both the experience I have gained in the events of my own engine failures, and from watching students and candidates for pilot licenses under pressure on flight tests, there are four factors that conspire to act against airspeed preservation, and all are human bar one.

These factors are:

- 1. The time it takes us humans to recognise the engine has failed.
- 2. The further time it takes us humans to consider potential responses and to take emergency measures.
- 3. The absolutely burning desire we, as humans, have to return to a place of safety in a threatening situation -and the runway was the last place we recognise as being safe.
- 4. How much airspeed decay is experienced by the aeroplane whilst the pilot is making up his/her mind about things.

We'll look at each of these in turn and maybe gather a better understanding of the issue and the human element.

For this discussion, let's assume that an aeroplane suffers a complete engine failure at 300 feet above the runway. We can assume that the established airspeed for the climb at the time of failure is around 1.3 Vs. Chronologically, the subsequent of events is likely to be:

The engine fails.

1. Nothing happens until the pilot realizes what happened and starts to take corrective action. This delay is likely to be longer than many might imagine.

The pilot realizes that something has happened, but it will take him/her time to figure out and understand exactly what it is that has happened. One of the most surprising factors in occurrences of this kind relates to a simulator study carried out some years ago (Kentley, 1975). This study found that the average time from engine failure to brake application in an aborted take-off situation was 4.45 seconds. Note that this was for a pilot under checkout conditions and was therefore the subject weas fully anticipating and thus prepared for an emergency event to occur. In the real occurrence, adding the element of surprise will inevitably increase the delay increase. This failure-to-brake-action time will be similar to the time required between engine failure and lowering the nose to repair the falling airspeed.

2. The next section of the event begins at the point the pilot recognizes that a problem exists.

After the pilot recognizes that a problem exists, they must then identify the specific problem and decide an appropriate response to the threat the problem provides. Then, lastly, that response action must be instigated. Now, these things also take time to be processed.

Further research has shown that the recognitions of an emergency and the time to respond to that realization varies greatly between individual people, but averages at least 3 seconds for most of the untrained population when the emergency is unexpected. So now, in addition to the 5 seconds it took for the pilot to realize that a problem exists, another 3 seconds will possibly pass before he/she may even begin to move the controls and attempt to restore the airspeed. This means that, for potentially eight seconds, the aeroplane has been sitting nose high and with no power applied. Herein lies the crux of this whole issue - what airspeed will be retained at the point when the pilot finally gets to push the stick forward supposedly to enter the glide attitude?

Because of the potentially 8 seconds it has taken for the pilot to realize that there is a problem, the airspeed has decayed. In a high mass/low drag aeroplane such as an A36 Bonanza, this fall in airspeed might be as little as a mere 15 knots from the 96 knot Vy for the Bonanza. This decay leaves the pilot seeing about 80 knots on the ASI which is fine for this aircraft because its normal approach speed is 80 knots. The same will generally apply for the Cherokee 6 and the

Page 9 Issue Number MONTH – 2025

Cessna 206, although with fixed undercarriage on these latter, the airspeed decay may be a little more severe.

However...... For a light, lower mass and higher drag aeroplane, it will be quite a different story. In my GR Lightwing, closing the throttle in a trimmed steady climb at 65 knots (Vy) my ASI indicates a mere 47 KIAS after 5 seconds, or about 41 KIAS if I still have take-off flap applied - and this is right on the GRs stall speed at MAUW. Note that I use a 5 second time interval: I am disregarding the additional time it might take me to respond after I recognise the engine has failed. Adding this extra 3 seconds would only serve to ensure that I was well and truly stalled by the time I stuffed the stick forward when the stopwatch read 8 seconds. In reality, the GRs nose would have automatically dropped well before I was in a mental position to push it down.

3. Now I am sitting at 300 feet, effectively in a stalled aeroplane. In reality, to regain my lost airspeed, I need to get the nose well down, far below the normal glide attitude to accelerate the aeroplane. At, or even close to, the stall, the drag value is so high the aeroplane cannot accelerate quickly and it is unlikely that it will ever regain the minimum speed I am trying to reestablish if I only lower the nose to the glide attitude. I now have to make a decision as to what I am going to do about the situation.

My brain is screaming for me to restore myself to safety and the last safe place was, as stated earlier, back on the runway. Herein lies the potentially overwhelming situational response from then pilot to roll into a VERY steeply banked turn and attempt to return to the safety of the runway.

But I am stalled, or so close to it that it's irrelevant. Applying aileron to roll into my panicked turn will cause the stall on my INTENDED UPGOING WING to instantly deepen because the aileron will have to go down to increase the camber AND INCREASE THE ANGLE OF ATTACK to cause that wing to rise. The potential result is to stall the wing that I am trying to lift and get a violent roll in the opposite direction to my intended turn.

I am now, still at 300 feet, in a stalled aeroplane that is completely unexpectedly autorotating in the opposite direction to my intended turn back to safety. I had barely caught up with the fact my engine had failed, and now I am overwhelmed by my spin out of my turn. I have no way to even catch-up with situational circumstance let alone exit from it. The pen of fate begins recording my name on the statistics list.

Note that, even if I didn't use a massive amount of aileron to roll into my panicked turn, at 300 feet there is not enough potential energy remaining in the aeroplane to complete the turnback, let alone still have sufficient airspeed to retain sufficient control to make a successful flare for a landing.

So, what options do I really have. Firstly, I must regain as much of my lost airspeed as I possibly can. Without that airspeed I am a passenger in an out-of-control aeroplane that's crashing — airspeed is the only thing that MIGHT give me back that control. I push the stick forward and the nose down into an attitude that is lower than that for the normal glide, and attempt to get back my delinquent aeroplane back to a minimum airspeed. What is my next priority?

Where to land? I can't turn. With no airspeed and the limited height in hand, a turn is impossible and therefore I must aim to land close to whatever heading I currently have. In other words – pretty well straight ahead. The GR Lightwing POH advises a calculatable rate of descent off 13FPS at its best glide speed. Therefore, being at 300 feet will give me 23 seconds before I am on the ground. But that doesn't work here, it will be a very much shorter time because I and

not at my best L/D glide speed and have to sacrifice some of the 300 feet in exchange for airspeed.

With the aeroplane being in such a precarious position re speed, I will have about half that time, perhaps as little as a mere 10 seconds, before I am at the flare heigh. That's not enough time to get the speed back up to the glide speed, and probably not enough to ensure that I can stop the descent in the flare when I am back at ground level.

In Issue 86 of the Flyer, published in November 2020, I produced an article on this same topic entitled, The Improbable Turn"; improbable because, if the pilot didn't have bags of experience and was very, very current, it was improbable the turn could be completed safely. The following is an excerpt from that article, reproduced because its message is just as significant here as it was there.

In 1974, whilst a line Instructor at the Waitemata Aero Club at Ardmore, New Zealand, Maurice Parsons, another line instructor, and I took out a Victa 100 to experiment. We hoped to ascertain a reasonable minimum height necessary to achieve a successful turn-back after an EFATO. Our findings were that, for us, two professional pilots, experienced, and very current on type, we needed to be at least 400 feet above the runway elevation to have any chance of successfully returning to the runway at all. The two primary issues were:

- 1. Not wasting altitude and immediately lowering the nose to retain 70 KIAS as the engine was throttled back (doesn't happen in a real one), and
- 2. Actually, getting the nose down far enough to achieve and maintain that speed whilst the aircraft was loaded when banked during the turn.

We found that the whole windscreen had to be filled with ground to maintain 70 kias in the steep descending turn necessary to get back to the runway and, for students and PPLs at least, this was likely to be too intimidating for them to realistically achieve. Thus, any attempt below at least 400 feet above the runway literally doomed the aircraft and its occupants. We settled on teaching no turnback on climb out below 700 feet above the runway.

Once established on the crosswind leg, a return to the runway was as safe as any other field selected at low level because of the extra altitude and the reduced heading change required to return to the runway. We also tried it in a PA28-140 with similar results. I must add, though, that we did the Cherokee testing with just the two of us in it for safety reasons, but agreed that the turn-back on initial climb out was to be discouraged and was only to be carried out after turning crosswind. This would be safe and quite appropriate for that aircraft type based on our experience on the PA28 with a full load.

Conventional pilot training takes into account the shortage of time available to respond to the recognition of an EFATO by deliberately overlearning the procedure to adopt in the event of its occurring. The purpose of overlearning is to produce an automated reaction that best uses the time available by minimizing delays after the initial surprise or shock of the failure and enhancing the decision-making process. This, once the realization has sunk in that a real EFATO has occurred, the subsequent actions are delivered from rote learning and no thought process is required. There is no time for a written checklist, and no time to even think about it. Just time for a set of practiced actions.

As a retired professional pilot, I believe that it is a better decision, in most circumstances, to make a controlled landing onto less than hospitable terrain, than to run the risk of stalling and spinning in an attempt to return to the runway should my engine fail after take-off. In my flying

life I have had three EFATOs. As an instructor, one failure was the disconnection of the carburettor heat cable in a Cessna 150, and ZK-CSW could not maintain height with two up and full tanks with the resulting over-rich mixture. Although this control is supposed to be sprung loaded so a failure would hold the control in the carburettor heat cold position, it did not and so we suffered a serious partial engine failure. I did not turn back – I landed on the cross runway. The second was in a Piper PA38-112 Tomahawk ZK-PAH where we suffered an engine-driven pump failure. When the electric pump was turned off at 300 feet in the climb-out, we saw the pressure drop on the fuel pressure gauge. Turning it back ON restored the pressure so the student under PPL flight test immediately aborted the flight and we returned, doing a conventional circuit. Needless to say, the electric pump remained on for the duration of that circuit. The student easily passed the subsequent test after the pump was replaced. He grinned when I advised him that had he not aborted the flight when the failure occurred, he'd have failed. Here we didn't turn back, but the inevitable power loss was averted by restoring the back-up system which we then relied on to get us back for a safe landing in the same direction on the same runway from which we departed. When time permits, trouble checks can have a big advantage.

My third EFATO was actually on take-off when flying a Fletcher, crop dusting, when, on my fourth flight for the day, a hermit ram ran out of the scrub and across the strip as I took off. The aeroplane was heavy - I was carrying an overload of powdered lime, and there was no room or way I could stop. Take-off was compulsory, either controlled, or uncontrolled when I went off the end of the strip. With the dump system in full operation, I staggered off the end, sinking as I flew across the drop-off, the dump gate wide open but less effective with the aircraft sinking. The engine-power was greatly reduced and only when the hopper was empty could I really stop sinking and start to totter up to the elevation of the strip so I could return. This power loss was caused by the impact of the sheep sliding up the nose leg to crush the underside of the cowl and substantially crush the flexible hose carrying the air supply from the air scoop on top of the cowling to the inlet manifold air inlet underneath.

Why have I included these? Merely to indicate that every EFATO will be different and every EFATO, after the initial actions have been completed, will require different decisions to be made to safely land. Whilst the choice of landing site may not pose an easy question, by not turning back and, instead, planning to land on the best location within an arc of 30° either side of the nose, in my opinion, is likely to improve your chances of survival tremendously in MOST EFATOs.

Remember, time really is of the essence when thinking about your reactions in the event of an EFATO. Practice the immediate actions you were taught in your training and never second guess them if faced by a failure.

Also remember that, in the occurrence, the sole aim really is to survive. I have tried to present in this article, that it is likely to be a very poor decision to turn back when so many statistics on turn-backs are also recorded as fatalities. A landing on rocky terrain under full control is far more likely to be survivable than a stall/spin approach onto a runway that's out of reach anyway.

A turn-back for real is like playing Russian roulette with 5½ chambers loaded.

While a man with a high-end ego and a word processer can suggest anything they want that will place them on an intellectual pedestal, you must make your own decisions when you are the pilot in command. Yes, I do agree that there are cases where pilots have indeed landed after

doing a 180 degree turn when the engine stopped. Statistically though, these are extremely the exceptions.

In reality, your best chance of getting home safely is to maintain control of your aberrant aeroplane, and land as close to straight ahead as the particular circumstances of your predicament allow.

When you read the work of writers advocating a turn-back after an EFATO, just ask yourself why, if it's such a good option, aren't there loads of turn-back survivors applauding the suggestion. There's not even a whisper from a survivor – the dead can't be heard – only counted.

However, as the pilot in command – it's entirely your call! You make the decision. But if you elect to turn back and are wrong, it may be the last decision that you ever make. Also, it's a pity if you had a passenger – they never had any choice!

Happy flying

- 1. Correct Answer: B) Visual lookout and radio self-announcements on the CTAF or 126.7
- 2. Correct Answer: B) Approved life jackets and an Emergency Locator Transmitter (ELT) or PLB
- 3. Correct Answer: B) 45 minutes fixed reserve
- 4. Correct Answer: A) Verify runway surface condition, slope, and length suitability via NOTAMs and local sources
- 5. Correct Answer: C) Use 126.7 MHz en route and change to the local CTAF within 10 NM or 1 000 ft AGL
- 6. Correct Answer: B) Manually with Airservices Australia upon departure and after landing
- 7. Correct Answer: B) Turn back or divert to maintain legal VMC and terrain clearance
- 8. Correct Answer: C) Reduced density altitude leading to longer take-off distance and reduced climb rate
- 9. Correct Answer: B) Broadcast on taxi, take-off, joining circuit, downwind, base, and final.
- 10. Correct Answer: B) Contact local operators for fuel confirmation and plan alternates with guaranteed supply

Page 13 Issue Number MONTH – 2025

Aircraft Books, Parts, and Tools etc.

Contact Rob Knight on mobile - 0400 89 3632

Tow Bars

Item	Condition	Price
Tailwheel tow bar.	Good condition	\$50.00

Propeller Parts

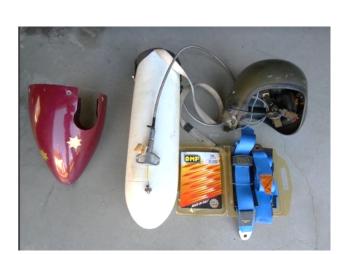
Item	Condition	Price
Propeller spacers, Assorted depths, all to fit Rotax 912 UL/ULS propeller flanges	Excellent	\$100.00 each
Spinner and propeller backing plate to suit a Kiev, 3 blade propeller, on a Rotax 912 engine flange.	Excellent	100.00

For all items, Contact Rob Knight on mobile - 0400 89 3632

Or email me at:

kni.rob@bigpond.com

Aircraft for Sale


Kitset - Build it Yourself

Reduced Price \$1,480.00 neg

DESCRIPTION

All of the major components needed to build your own aircraft similar to a Thruster, Cricket or MW5.

- Basic plans are included, also
- Hard to obtain 4" x 3" box section, 2 @ 4.5 metres long.
- Wing spar & lift strut material 6 tubes of 28 dia. x 2 wall.
- 20 fibreglass ribs plus the moulds,
- 16 spar webs plus the moulds,
- 2 fibreglass flat sheets for the leading edges 4 metres long x 1.1 metres wide.
- A ballistic parachute,
- A 4-point harness,
- Set fibreglass wheel pants, and
- More.

Support parts – Harness etc.

Box sections and tubes

A very comprehensive kit of materials

0000000000

Colin Thorpe. Tel: LL (07) 3200 1442,

Or Mob: 0419 758 125

Aircraft Grade Bolts for Sale

Aircraft AN Bolts - \$500

AN3, AN4 & AN5 bolts, all bagged - 500 bolts in total.

Today's cost – approximately \$5,500

A list can be supplied if required

Contact Colin Thorpe - 0419 758 125

Sky Dart Single Seat Ultralight for Sale.

\$4,500.00 NEG

A single seat, ultralight, Taildragger. Built in 1987, this aircraft has had a single owner for the past 18 years, and is only now I am regretfully releasing it again for sale. I also have a Teenie II and am building another ultralight so I need the space.

The landed Sky Dart III rolling through at YFRH Forest Hill

TTIS airframe is 311 hours, and the engine, TTIS 312 – is just 1 hour more. Up-to-date logbooks available. 2 X 20 litres tank capacity. To be sold with new annuals completed.

It is easy to fly (for a taildragger), and a great way to accumulate cheap flying hours.

Call me to view, Bob Hyam, Telephone mobile 0418 786 496 or Landline – 07 5426 8983, or Email: bobhyam@gmail.com

Landed at McMaster Field after my flight back from Cooma just West of Canberra. In the cockpit with me is GeeBee, my dog

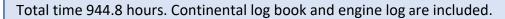
Single Seat T84 Thruster, disassembled and ready for rebuild.

I have a T84 single seat Thruster project in my hanger at Watts bridge.

The fuselage is on its undercarriage, the wing assemblies are folded up and the skins are with them. Included is a fully rebuilt Rotax 503 dual ignition engine and propeller.

And, most importantly – the aircraft logbook!

Asking price \$5000.00


Contact John Innes on **0417 643 610**

Aircraft Engines for Sale

Continental O200 D1B aircraft engine

Currently inhibited but complete with all accessories including,

- Magneto's,
- Carburettor,
- Alternator,
- Starter motor,
- Baffles and Exhaust system, and
- Engine mounting bolts and rubbers.

Phone John on **0417 643 610**

----- 000000 -----